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Surface waves of large amplitude beneath 
an elastic sheet. 

Part 1. High-order series solution 

By LAWRENCE K. FORBES? 
Department of Mathematics, Kansas State University, Manhattan, KS 66506 USA 

(Received 10 January 1985 and in revised form 26 February 1986) 

Two-dimensional periodic waves beneath an elastic sheet resting on the surface of an 
infinitely deep fluid are investigated using a high-order series-expansion technique. 
The solution is found to have certain features in common with capillary-gravity 
waves; specifically, there is a countably infinite set of values of the flexural rigidity 
of the sheet at  which the series solution fails, and these values are conjectured to be 
bifurcation points of the solution. Limiting waves of maximum height are found at 
each value of the flexural rigidity investigated. These are characterized by a cusp 
singularity in the elastic bending moment at the wave crest, and infinite fluid pressure 
there. For at least one value of the flexural rigidity, the series solution shows that 
the wave of maximum height also travels with infinite speed. 

1. Introduction 
The field of ‘ice engineering’ appears to be a rapidly growing area of scientific 

investigation, involving all aspects of ice growth on structures, damage to offshore 
constructions by floating ice sheets, and other problems having to do with facilities 
built upon the ice itself, and with the performance of icebreaking ships, for example. 
An important problem in this field would appear to be the accurate determination 
of the properties of waves travelling through water covered by a sheet of ice; such 
waves might, for example, be produced by a vehicle moving across the ice, and, if 
sufficiently large, could cause breaking of the ice sheet and consequent danger to the 
vehicle. 

The present investigation stems from the observation of waves produced beneath 
a floating ice sheet by the periodic motion of a model icebreaking ship, during 
experiments performed in the large ice-room facility at the University of Iowa. These 
experiments are detailed in reports by Miiller & Ettema (1984a, b ) .  This study is 
aimed at determining the important characteristics of such waves. 

The study of surface waves is one of the oldest problems in fluid mechanics, and 
the literature on the topic is vast. We do not presume to summarize this literature 
here, referring the reader instead to the review article by Schwartz & Fenton (1982). 
That the flow should be irrotational for an ideal fluid was first recognized by Stokes 
(1849), who later (Stokes 1880) developed the inverse formulation and Fourier-series 
solution technique that has formed the basis of several modern investigations. 
Schwartz (1974) automated Stokes’ solution procedure, using a digital computer to 
evaluate the coefficients in Stokes’ series, and obtained solutions of high accuracy 
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for waves of arbitrary height in fluid of arbitrary depth. His series solution has since 
been extended by Longuet-Higgins (1975), who discovered a remarkable maximum 
in the wave speed before the wave of maximum height is attained, and by Cokelet 
(1977). 

Wilton (1915) applied Stokes’ procedure to the problem of periodic surface waves 
in the presence of both gravity and surface tension, and demonstrated that the 
method yields solutions except at a countably infinite set of values of the surface 
tension, at which the series fails. He then showed that this failure of the series is 
associated with the existence of multiple solutions to the problem. Hogan (1980,1981) 
has extended Wilton’s series using a computer, in the manner described by Schwartz 
(1974), and Schwartz & Vanden Broeck (1979) computed numerical solutions to the 
problem, thus providing direct confirmation of the existence of multiple solutions. 

Waves beneath a floating elastic plate appear to have been investigated first by 
Stoker (1957, p. 438). He was concerned with the transmission of waves beneath a 
floating breakwater, in the context of infinitesimal-wave theory. His work has since 
been extended by Evans & Davies (1968) to the case of three dimensions. Tuck (1982) 
has considered inviscid flow about a moving flexible sheet in extreme ground effect, 
obtaining a problem similar in some respects to Stoker’s. 

This paper concerns waves of arbitrary amplitude beneath an elastic sheet floating 
on the surface of an infinitely deep fluid. We follow Squire (1984) in assuming that 
this problem is capable of modelling ocean waves in the presence of sea ice when the 
fluid is incompressible and inviscid and flows irrotationally, and the ice behaves as 
an elastic plate. The experiments of Muller & Ettema (1984a, b )  indicate that an ice 
sheet does indeed exhibit elastic behaviour under appropriate circumstances, and the 
equation derived in $2 allows for the possibilities that the curvature of the sheet may 
be large, and that the sheet may not necessarily be thin. In $3  periodic solutions are 
sought to the equations of motion, using Fourier series and perturbation expansions 
for the Fourier coefficients, and numerical results are presented in $4. The paper 
concludes in $5 with a discussion of the results and some suggestions for further 
research. 

2. Formulation 
We consider two-dimensional periodic waves of length h moving with constant 

speed c from right to left in a fluid of infinite depth. An elastic sheet of thickness T 
and density pM rests along the surface of the fluid. Consider a Cartesian coordinate 
system with the y-axis pointing vertically, moving with a wave crest; relative to these 
moving axes the waves are of permanent form, and the fluid moves from left to right 
in the direction of the positive x-axis. The peak-to-trough height of the waves is 2A 
and the acceleration due to gravity is g in the negative y-direction. The fluid is 
assumed to have density p. 

An approximate equation describing the deflection of the elastic sheet will now be 
derived. From the classical theory of the bending of beams (see Donne11 1976) the 
bending moment M is related to the radius of curvature R of the beam by the equation 

D M = - -  
R’ 

in which D is the flexural rigidity, 
E F  

D =  
12( 1 - v2) ’ 
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and E and v are respectively Young’s modulus and Poisson’s ratio for the beam. The 
loading pressure P acting on the beam is then obtained in terms of the moment M 
from the equation 

Dimensionless variables are now introduced, in which all lengths are scaled by the 
quantity h / 2 x ,  and (gh/2x)b is the corresponding reference velocity, following 
Schwartz & Vanden Broeck (1979). The moment M and pressure P are referred to 

gh3) (21C)-3 and pgh/2n: respectively. Solutions to this problem are thus functions 
of five dimensionless parameters: The wave-speed number p = 2xc2/gA; the ratio 
dM = p M / p  of the densities of the sheet and the fluid; the dimensionless sheet 
thickness H = 2xT/A; a coefficient K = (16x4D) (pM gh4)-l of flexural rigidity; and 
the half-wave height a = A/h .  For later reference, we also define the wave steepness 
E = a / x .  In  terms of these dimensionless variables, (2 .1)  and (2 .2)  become 

and 

K M = - -  
R 

The quantity R in (2.3) is the radius of curvature of the sheet at some point, 
measured from the neutral plane, which is approximately in the centre of the sheet, 
as shown in figure 1. Therefore 

_ -  1 d2rl/dE2 
R - (1 + (dq/d5)2)i’ 

where (6,  q )  are the coordinates of a point on the neutral surface. We wish to express 
(2 .5)  in terms of the coordinates ( x , y )  of a point on the lower surface of the sheet. 
From figure 1 it  is clear that 5 = R cos 8 and q = R sin 8 ; in addition x = (R -;H) cos 8 
and y = (R-4H) sin8. The angle 8 can be found from tan8 = -(dy/dx)-’, and so 

= X - + y ’ B ) : ,  
Hy‘ I 

= Y + 2 ( 1  +yf2)* 

After some algebra, (2 .3) ,  (2 .5)  and (2.6) may be combined to give 

in which primes denote differentiation with respect to x.  
It remains to state the equations governing the behaviour of the fluid beneath the 

elastic sheet. This fluid is assumed to be incompressible and inviscid and to flow 
without rotation; consequently, a velocity potential 6 and stream function $ exist, 
satisfying the Cauchy-Riemann equations 

14 Y L M  16s 
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FIQURE 1, Definition sketch for the elastic sheet. The neutral plane is shown as a dashed line in 
the centre of the sheet. 

in which u and v are respectively the horizontal and vertical components of fluid 
velocity. At infinite depth within the fluid, 

u+$, V+O asy-t-m, (2.9) 

(2.10) 

while the wave profile at the surface must satisfy 

y(0) - y(x) = 2a. 

A representative wave cycle is sketched in figure 2. Following Tuck (1982), we assume 
that the pressure P in (2.4) can be equated to the pressure on the lower face of the 
elastic plate due to fluid forces; the latter is obtained from the Bernoulli equation 

:(u2+v2)+y+P = 2 p + d u H .  (2.11) 

Notice that the choice of Bernoulli constant in (2.1 1) forces the mean free-surface 
elevation 

i n  
(2.12) y,=Z;;l -n YdX 

to be zero in the absence of the elastic plate, as shown by Schwartz & Vanden Broeck 
(1979). 

Equations (2.8) indicate that the complex potential f = #+i@ is an analytic 
function of the variable z = x+iy, in the entire fluid region. To simplify the 
formulation of the problem, the transformation of Stokes (1880) is invoked, in which 
f is now chosen as the independent variable and the solution sought in the form z(f). 
Thus, although the location of the surface of the fluid is unknown in the physical 
z-plane, it maps simply to the line $ = 0 in the f-plane. In addition, the lines 
x = -7c, 0 , x  map to lines = - q d , O , x , d  respectively. Following Schwartz & 
Vanden Broeck (1979), a further conformal transformation 

f =  ipiIn[ (2.13) 

is made to the f-plane, where 6 = reie. This has the effect of mapping each wave cycle 
in thef-plane into a closed disk of radius 1 in the [-plane, with the interface between 
the fluid and the elastic sheet, @ = 0, mapping to the circle r = 1. 
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x=--x x=IL 

FIGURE 2. Sketch of a dimensionless wave profile, showing the peak-trough height 2a. The 
free-surface shape is taken from an actual solution for a pure gravity wave (K = 0). 

The final form of the Bernoulli equation (2.11) in the C-plane is 

/4(-- l )+y+P=dMH 1 o n r = l ,  
2 x:+yj 

where, from (2.4), the pressure is given by 

and (2.7) yields the moment M in the form 

(2.14) 

(2.15) 

(2.16) 

In the g-plane, (2.10) becomes 

y(1,O)-y(1,x) = 2a. (2.17) 

Thus we seek an analytic function z(g)  in the disk IlJ < 1 ,  satisfying conditions 
(2.14)-(2.17) on the boundary r = 1. The wave-speed parameter p is also unknown, 
and is therefore to be sought as part of the solution. 

3. The series solution 
The solution z(g) to the equations of motion developed in $2 is sought in the 

Fourier-series form 
00 

45) = i h g + i  Z A, gn, 
n-0 

in which the coefficients A,, n = 0, 1,2, . . . are all real. Equation (3.1) already satisfies 
the required periodicity conditions and the condition (2.9) a t  infinite depth, and so 

14-2 
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it remains to choose the coefficients A ,  and parameter p to satisfy the surface 
conditions (2.14)-(2.17). Equation (2.17), for example, yields 

m 

The system of equations derived from (2.14)-(2.16) is too lengthy to be presented 
here in full, but may be obtained in a straightforward manner. To simplify the very 
substantial algebra involved, we have introduced seven intermediate products of 
series, at the surface r = 1, as follows: 

o n r =  1. (3 .3)  

The intermediate variables in (3 .3)  and the quantities M and P are all developed as 
Fourier series. Thus 

with similar expressions for the other variables. 
There thus results an infinite system of algebraic equations in the infinitely many 

unknowns p, A,, A,, A,, .. . . We seek the solution of this system using perturbation 
expansions in the half-wave height a, in the manner adopted by Schwartz (1974). 
We assume that 

etc., and that 

( 3 . 5 4  

(3.5b) 

where a = BSC, and S, is a scale factor designed to prevent the coefficients A,,, etc., 
from becoming excessively large. Values for S, are typically in the range 0.1-0.5. 

The linearized solution is obtained from (3 .5)  by retaining only first-order terms 
in B. To this order of approximation, we have 

z ( c )  = i In c+ iac+ O(a2),  ( 3 . 6 ~ )  

which yields the linearized free-surface profile 

y(x) = a cosx+O(cr2) (3.6b) 

and wave-speed number 

p = 1 +d, K+O(a2) .  ( 3 . 6 ~ )  
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An interesting situation arises as higher-order coefficients are computed in (3.5). 
For example, A,, is found to be 

which evidently is unbounded for d ,  K = A. Similarly, A,, becomes infinite whenever 
d,K = & or &. The situation is clearly analogous to Wilton’s (1915) original work 
on capillary-gravity waves, as the following theorem indicates. 

Theorem 
The series expansions (3.5) fail to yield solutions for A, and pj whenever 

n = 2,3,4,  ... 1 
n(n2+n+ 1)’  

dMK= (3.7) 

Proof 
The proof of this result clearly consists of solving the very large system of 

recurrencerelationsresultingfrom (2.14)-(2.17), (3.1) and (3.3)-(3.5) forthe coefficients 
A,, andpf, and observing that these fail to be defined whenever (3.7) is satisfied. This 
has, of course, been done and is needed in the numerical work of the next section, 
but the general result is far too lengthy to be presented here. When j = 0 ,  the 
equations can be solved separately, yielding the comparatively simple expression 

A,, = +(n-l)-l [l-d,K(ne+n+ 1)nI-l -n2dM Z M,,(F~L,,,+~Hfl~L~,,) 
n-i 

[ 8-1 

n-1 n-i 1 

Equation (3.8) cannot yield a solution for A,, whenever (3.7) is satisfied, making the 
0 determination of A, and p, impossible. This confirms the theorem. 

The work of Wilton (1915), extended by Hogan (1981), and the numerical studies 
of Schwartz & Vanden Broeck (1979) indicate that, in the case of capillary-gravity 
waves, the failure of the series expansions (3.5) at discrete values of a surface-tension 
parameter is an indication that the problem possesses multiple solutions. We are 
likewise prepared to offer the following conjecture concerning the multiplicity of 
solutions to the present problem. 

Conjecture 
The values of K in (3.7) at which the series fails represent points at which 

bifurcation of the solution may occur. There are countably infinitely many families 
of solutions to this problem, and, M K+O, the number of them increases. 

This conjecture can be confirmed analytically, in part, by demonstrating the 
existence of two solutions when n = 2(dM K = &) in (3.7). This is done by generalizing 
the series (3.5) to allow terms of order a in the coefficient A, and in p, as described 
by Wilton (1915) and Hogan (1981). This gives, for d,K = &, 

A, = -9,+o(a3), 
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A ,  = f+a++(aZ), 

The system of recurrence relations for An* and pj,  of which (3.8) forms a part, has 
been programmed in FORTRAN on NAS 6630 and IBM 3083E digital computers, and 
solved to high order using double precision arithmetic. The series (3.5) are then 
summed using Pad6 approximants, as described by Schwartz (1974). This yields the 
coefficients A,,A,,  A,, ... and the wave-speed parameter p. Equation (3.1) then 
provides the solution at any desired point in the fluid. 

It is now possible to draw wave profiles, by setting [ = eis in (3.1). The pressure 
P and moment M in (2.15) and (2.16) are also available from the series solution, as 
is the mean free-surface elevation yav in (2.12). In the [-plane this last quantity 
becomes 

I rr 

which, after the application of (3.1) and some algebra, finally yields 

1 " o  
yav = A,+- r, nA2,. 

2 n-i 
(3.9) 

The infinite sum in (3.9) is evaluated from the converged coefficients A,, A,, A,, ... 
using Pad6 approximants (rational fractions) as before. We have used the epsilon 
algorithm of Wynn (1966) to form the Pad6 fractions in every instance. 

4. Presentation of results 
When K = 0 in (2.14)-(2.16) the governing equations reduce to those describing 

pure gravity waves. The coefficients produced by our computer program in this case 
may then be checked against those given by Schwartz (1974) and Cokelet (1977) and 
are found to be in agreement with the results of these authors, confirming the 
correctness of our procedure, a t  least for K = 0. Two additional checks on the ability 
of the present method to compute gravity waves accurately are also available. The 
first of these is the condition (2.10), which is usually satisfied to at least eight decimal 
places, and the second is that yav = 0 for the gravity wave, as explained in $2. Our 
solutions usually give yav (computed from (3.9)) of the order of 1O-lo. 

In  order to facilitate comparison with results to be presented for K =+ 0, we first 
show in figure 3 the difference p - 1 between the wave-speed parameter and the 
linearized value (given by ( 3 . 6 ~ ) )  as a function of the half-wave height a, for the pure 
gravity wave (K = 0). As a+O, p- 1 + O  as expected. For large a, however, the series 
solution indicates a local maximum for p - 1 before the theoretical maximum value 
amax = 0.44353 is reached. (This value of amax is obtained from the result 
emax = 0.141 18 for maximum wave steepness, given by Schwartz (1974).) The 
existence of a local maximum in p - 1 was first observed by Longuet-Higgins (1975), 
and has been confirmed since by Cokelet (1977) and Hogan (1980). 
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FIQURE 3. Wave-speed parameter as a function of a for the pure gravity wave. 

Figure 4 shows three wave profiles for the case K = 0.4, H = 0.005, dM = 0.9 (and 
S, = 0.3), obtained a t  the three values of half-wave height a = 0.03,0.075 and 0.123. 
This value of K = 0.4 represents an elastic sheet of reasonable flexural strength. The 
Pad6 fractions used to sum the series ( 3 . 5 ~ )  for the Fourier coefficients did not 
converge with acceptable accuracy beyond a = 0.123, and we conclude that the profile 
in figure 4 for this value of a represents the free-surface shape of a wave close to some 
maximum permissible height. 

Unlike pure gravity waves, which are ultimately limited in height by the formation 
of a cusp singularity enclosing an angle of 120" a t  their crests, the waves in figure 4 
do not display any such obvious singular behaviour. In order to understand the 
mechanism responsible for the failure of solutions to exist beyond about a = 0.123, 
we present in figures 5(a )  and (b) the moment M and pressure P for the three waves 
in figure 4 as functions of z. For a = 0.123 figure 5(a)  indicates that the moment has 
developed a remarkable, protruding, almost-cusped maximum at the crest z = 0. A t  
this value of a, the pressure in figure 5 ( b )  is observed to form a large peaked maximum 
a t  the wave crest. 

A plausible explanation for the results in figures 4 and 5 may be formulated in the 
following manner. It appears from figure 5(a)  that the wave of maximum height 
possesses a cusp singularity in its bending moment a t  the crest x = 0. We may model 
such behaviour by the function 

M ( z )  N K(M,-Clzl) as z+O, (4.1) 

where K M ,  is the value of the moment at the crest. Now from (2.7) we have the 
approximate relation 

at the free surface y(z), which gives the surface elevation 

M ( x )  % -Ky"(z) 

y(z) N & ' l ~ 1 ~ - f M , ~ ~ + y ,  as x+O, ( 4 4  
where yc is the height at the crest. Note that the pressure in (2.4) involves the second 
derivative of the moment M ( z ) ,  which, from (4.1), yields 

P ( z )  dMH+2CdMK&(z) as x+o, (4-3) 
in which S(z) is the Dirac delta function. Thus waves are ultimately limited in height 
by the formation of a point of infinite pressure at the crest, as indicated by (4.3). Yet 
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FIGURE 4. Wave profiles for H = 0.005, K = 0.4, d, = 0.9 at the three half-wave heights 
a = 0.03 (-.-), 0.075 (- - - - -) and 0.123 (-). 

(4.2) shows that the surface profile and its first two derivatives are continuous there, 
as is evidently the case in figure 4. 

The difference between the wave-speed parameter p and the linearized value, given 
by (3.6c), is shown as a function of a in figure 6. Unlike the case of the pure gravity 
wave (see figure 3), the speed now increases monotonically with a, apparently 
becoming infinite for the wave of maximum height. An analysis of the coefficients 
p, in (3.5b) using a Domb-Sykes plot (to be described later) indicates that p becomes 
infinite at  the approximate limiting value a,,, = 0.126. We have attempted to study 
the approach to singular behaviour by reverting the series (3.5b) for the function 
p ( p ) ,  but the new function p(p) provided little new information. 

Figure 7 shows free-surface profiles for the case H = 0.005, K = 0.05, d, = 0.9, at  
the three values of half-wave height a = 0.03, 0.06 and 0.1. A Domb-Sykes plot 
reveals that amax 0.107, so that the case a = 0.1 in figure 7 represents a surface 
profile of a wave very close to the maximum height. Note that the value d, K = 0.045 
lies between the first two critical values and f given by (3.7), so that, according 
to the conjecture in $3, the waves in figure 7 are expected to represent a different 
branch of the solution from that shown in figures 4-6. However, the wave profiles 
in figure 7 seem very similar to those shown in figure 4 for the case K = 0.4, and to 
show the qualitative differences between these two branches of solution it is again 
necessary to examine the moment and pressure, which are shown for this case in 
figures 8(a )  and (b) respectively. 

It is clear that the moment again ultimately forms a cusp at the wave crest and 
that the pressure becomes large at this point, so that (4.1)-(4.3) again serve as a useful 
description of the approach to the wave of maximum height. However, figures 8 (a, b) 
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FIGURE 5. (a) Bending moment and (a) pressure profiles on the bottom face of the elastic sheet 
forH=0.005,K=0.4,dM=0.9at  a=0.03(--.-),0.075 (-----)and0.123(-).  
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FIGURE 6. Wave-speed parameter aa a function of a for H = 0.005, K = 0.4, d ,  = 0.9. 

y x  102 

15 

- l o t  

FIGURE 7. Wave profiles for H = 0.005, K = 0.05, d ,  = 0.9 at the three half-wave heights 
a = 0.03 (-.-), 0.06 (- - - - -) and 0.1 (-). 

for the case K = 0.05 differ from figures 5(a, b) (K = 0.4) by the presence of an 
additional dimple in both the moment and pressure profiles. This is similar to the 
situation existing in the case of capillary-gravity waves, as discovered by Wilton 
(1915), and discussed by Schwartz t Vanden Broeck (1979) and Hogan (1981), except 
that, for waves beneath an elastic sheet, these additional maxima and minima only 
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FIGURE 8. (a) Bending moment and ( b )  pressure profiles on the bottom face of the elastic sheet 
for H = 0.005, K = 0.05,dM = 0.9 at a = 0.03 (-.-), 0.06 (- - - - -) and 0.1 (-). 



422 L. K .  Forbes 
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12 I 
X 

-’* t 
FIGURE 9. Wave profiles for H = 0.005, K = 0.009, d, = 0.9 a t  the three half-wave heights 

a = 0.03 (- . -), 0.06 (- - - - -) and 0.1 (-). 

appear in the moment and pressure profiles, and evidently are not seen in the surface 
profile itself. 

We show in figure 9 three solutions for the case H = 0.005, K = 0.009, d ,  = 0.9, 
for half-wave heights a = 0.03,0.06 and 0. I .  As will be demonstrated later, the profile 
for a = 0.1 is almost that of the wave of maximum height. Although the waves in 
figure 9 (K = 0.009) represent a different branch of the solution to those shown in 
figure 7 (K = 0.05), according to the previous conjecture, there are only minor 
differences between the respective surface profiles, so that an examination of the 
moment and pressure is required to highlight qualitative differences between the 
solution branches. 

Moment and pressure profiles are shown for this case (K = 0.009) in figures 10(a) 
and (b), and again it appears that the highest wave is characterized by a cusp of 
moment and a point of unbounded pressure at the crest. Notice that the cusp and 
pressure singularities now have the opposite sign to those in figures 5 and 8, however. 
In addition, the strengths of these singularities are very much reduced, which is 
modelled by allowing K to become small in (4.1) and (4.3). The pressure profile in 
figure 10 (b), in particular, now possesses many secondary ‘dimples ’ . 

We now seek the radius of convergence of the series (3.5b) for ,u in the case 
H = 0.005, K = 0.009, d, = 0.9 shown in figures 9 and 10, attempting to determine 
the nature and location of the nearest singularity in the complex B plane. For this 
purpose, a graphical extrapolation of the D’Alembert ratio test is employed, and is 
due to Domb & Sykes (1957). Suppose that the nearest singularity of the function 
~ ( 8 ” )  is of the form 
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FIGURE 10. (a) Bending moment and (a) pressure profiles on the bottom face of the elmtic sheet 

for H = 0.005, K = 0.009,dM = 0.9 at a = 0.03 (-.-), 0.06 ( - - - - - )  and 0.1 (-). 
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where C, 6 and [ are constants. Then, from the binomial theorem, it follows that the 
coefficients pj in (3.5b) must satisfy the relation 

(4.5) 

as j becomes sufficiently large. Thus a graph of ,uj/pjPl against l/j  approaches a 
straight line with vertical intercept - l/[ and slope ( 1  +a)/[. The maximum value 
of the half-wave height a for which the series (3.5b) converges is then amax = (-[S$. 
Equation (4.5) shows that the parameters [ and 6 can be obtained from the limits 

and 

( 4 . 6 ~ )  

(4.6b) 

and these may be estimated using the extrapolative el transformation due to Shanks 
(1955), for example. 

A Domb-Sykes plot for p in the case H = 0.005, K = 0.009, d, = 0.9 is shown in 
figure 11. This graph is clearly asymptotic to a line of zero slope. For this case, the 
growth of round-off error in the coefficientspj seems unusually slow, and consequently 
it has been possible to show results to order j = 60 in figure 11.  The Shanks 
transformation of the sequence of ratios ,uj/pj-l in ( 4 . 6 ~ )  converges to six figures, 
giving the value 2.24670 for the vertical intercept in figure 11.  Since we have taken 
S,  = 0.15, this yields a,,, = 0.100073, and the sequence (4.6b) for the singularity 
exponent then converges under the Shanks transformation to the value 6 = - 1.00, 
correct to three figures. There thus seems little doubt that, at  least for this case, the 
wave-speed parameter p possesses a simple pole singularity on the positive real axis . -  

as a+f0.100073, 
CK 

of a, of the form 

pL-t (01-0.100073) (a+0.100073) (4.7) 

where C is a constant. 
The wave-speed parameter is shown as a function of a in figure 12, and evidently 

does exhibit singular behaviour near a = 0.1. However, this value of the flexural 
rigidity ( K  = 0.009) is very small, so that the singularities (4.3) and (4.7) are quite 
difficult to detect. In  addition, we have summed the series (3.5) using Pad6 fractions, 
which are capable of analytically continuing the solution in the complex a-plane right 
past the pole a t  a = amax, making detection of this weak singularity even more 
difficult. A portion of the curve in the physically meaningless region a > amax, 
obtained by the Pad6 fractions, is sketched with a dashed line in figure 12. 

Thus far we have not considered the effect upon the solutions of changing the 
ice-sheet thickness H ,  which enters the problem in the inertial term d,H on the 
right-hand side of the Bernoulli equation (2.14), and also in (2.16), where it represents 
the fact that the radius of curvature of the sheet is measured from the neutral axis 
and not from the lower face of the ice sheet. The inertial term d, H merely accounts 
for the weight of the sheet, and, by (2.15), only influences the mean pressure, and 
cannot affect the wave profile itself. The effect of the thickness H in (2.16) upon the 
solutions is clearly more important, however, and a large number of computer 
programs have been run in order to quantify this effect. Nevertheless, the wave 
profiles and propagation speed are scarcely affected by moderate alterations to the 
value of H ,  and consequently the results do not warrant inclusion here. 
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FIGURE 12. Wave-speed parameter as a function of a for H = 0.005, K = 0.009, d, = 0.9. 

If the ice-sheet thickness H becomes very large, then it is clear from (2.14)-(2.16) 
that elastic effects become insignificant, and, since the Bernoulli equation (2.14) then 
becomes simply the equation describing pure gravity waves, these are the only 
possible outcome for very large H. Consequently, all the other branches of solution 
must vanish a8 H becomes large. We confirm that this is so in table 1, by showing 
the maximum permissible half-wave height amax for different values of H, in the case 
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H 

0.005 
0.01 
0.05 
0.1 
1 

10 
50 

amax 

0.100073 
0.099968 
0.099137 
0.098 1199 
0.083 1670 
0.034 8704 
0.010028 

s 
- 1.00 
- 1.00 
-1.00 
-1.00 
- 1.00 
-1.01 
- 1.00 

TABLE 1. Maximum half-wave height and singularity exponent as functions of H ,  for the case 
K = 0.009, d, = 0.9. The Shanks transformations of (4.6) converged in each case to the number 
of significant figures shown. 

K = 0.009, d ,  = 0.9. The quantities amax and the singularity exponent 6 were 
obtained from Domb-Sykes plots by applying the Shanks el transformation to the 
sequences defined in (4.6), and the results in table 1 indicate that a,,, indeed 
decreases as H increases, as expected. In addition it seems that in every case the 
limiting singularity remains a simple pole, of the type illustrated in (4.7). 

5. Discussion 
Periodic waves of arbitrary amplitude beneath an elastic sheet floating on the 

surface of an infinitely deep fluid have been investigated. Although we have ignored 
fluid viscosity, which would require that the no-slip condition be satisfied at  the 
surface of the fluid, we do not anticipate serious errors arising from this omission, 
since our results indicate that the waves beneath the elastic sheet are of relatively 
small amplitude, and, unlike pure gravity waves, do not give rise to regions of extreme 
curvature. Consequently, viscous effects would be confined to a narrow boundary 
layer at the fluid surface, especially at  large Reynolds numbers. The elastic sheet is 
assumed to behave as a classical beam of finite thickness, the curvature of which is 
not necessarily small. This problem differs conceptually from the gravity-wave case 
investigated by Schwartz (1974) and the capillary-gravity wave studies of Hogan 
(1980) in that our free-surface condition, while certainly nonlinear, nevertheless 
represents only an approximation to the real situation. However, we believe our 
surface condition to be adequate in almost every circumstance, and see few benefits 
at present in pursuing the higher-order elasticity theories, which are considerably 
more complicated than that adopted here. 

The high-order series solution appears capable of convergence for all values of the 
flexural rigidity K ,  except the denumerably infinite set dM K = n-'(n2+n+ l)-l, 
n = 2,3,4,  . . . . These singular values are conjectured to be associated with the 
existence of multiple solutions; this is confirmed in the case n = 2 in this paper, and 
could presumably be done at arbitrary K using a numerical method similar perhaps 
to that employed by Schwartz C Vanden Broeck (1979). 

Results have been presented for several non-zero values of K .  Each such result 
characterizes a different branch of the solution, evidenced by the different numbers 
of 'dimples' in the pressure profiles at  large amplitude. The wave profiles are 
remarkably similar qualitatively, however. It has been determined that a maximum 
height exists for these waves, at which the bending moment and pressure at the crest 
become singular, and a simple mathematical description of these singularities has 
been given. The wave speed apparently becomes infinite at this maximum height ; 
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this has been confirmed at least for one value of the flexural rigidity by means of a 
Domb-Sykesplot. It may prove possible in the future to develop a local solution, valid 
in some neighbourhood of the wave crest, which would define more clearly the nature 
of the singular behaviour of the highest wave as a function of K. 

The infinite propagation speed predicted for the wave of maximum height is a result 
of the point of infinite pressure that is formed below the wave crest. In practice, the 
large pressure formed at the crest of a high wave is expected to result in cracking 
of the elastic sheet near this point, preventing the maximum-height wave of infinite 
propagation speed from ever being observable. For periodic waves beneath an elastic 
sheet, cracking would occur at  uniform intervals, resulting in the formation of floating 
blocks of approximately equal length. This phenomenon is actually observed in the 
break-up of shore-fast ice, for example, as the photograph presented by Squire (1984) 
makes clear. In  the context of ice engineering, such an event may well constitute a 
significant hazard, and we believe that an accurate table of the maximum theoretical 
wave height as a function of K, d ,  and H could be of benefit to the ice-engineering 
community. 

In  this paper, we have not addressed the important question of the stability of the 
various branches of the solution. This difficult task is well beyond the scope of the 
present investigation, and is left to future research. 

This work was undertaken in response to experiments conducted by Dr A. Muller 
of ETH, Zurich, and Dr R. Ettema of the Institute of Hydraulic Research, Iowa City, 
using the large ice-room facility at the University of Iowa. Subsequent assistance with 
the initial problem formulation by Mr M. Nagano of Mitsui Engineering and 
Shipbuilding Company, Tokyo, and discussion with Dr R. Ettema are gratefully 
acknowledged. 
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